AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions.
نویسندگان
چکیده
Regulation of protein translation through Akt and the downstream mammalian target of rapamycin (mTOR) pathway is an important component of the cellular response to hypertrophic stimuli. It has been proposed that 5'-AMP-activated protein kinase (AMPK) activation during muscle contraction may limit the hypertrophic response to resistance-type exercise by inhibiting translational signaling. However, experimental manipulation of AMPK activity during such a stimulus has not been attempted. Therefore, we investigated whether AMPK activation can attenuate the downstream signaling response of the Akt/mTOR pathway to electrically stimulated lengthening muscle contractions. Extensor digitorum longus muscles (n = 8/group) were subjected to a 22-min bout of lengthening contractions by high-frequency sciatic nerve electrical stimulation (STIM) in young adult (8 mo) Fischer 344 x Brown Norway male rats. Forty minutes before electrical stimulation, rats were subcutaneously injected with saline or 5-aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR; 1 mg/g body wt), an AMPK activator. Stimulated and contralateral resting muscles were removed at 0, 20, and 40 min post-STIM, and AMPK, acetyl CoA carboxylase (ACC), Akt, eukaryotic initiation factor 4E-binding protein (4E-BP1), 70-kDa ribosomal protein S6 kinase (S6K1), and eukaryotic elongation factor 2 (eEF2) phosphorylations were assessed by Western blot. AICAR treatment increased (P < or = 0.05) post-STIM AMPK (Thr172) and ACC phosphorylation (Ser79/221), inhibited post-STIM S6K1 (Thr389) and 4E-BP1 (gel shift) phosphorylation, and elevated post-STIM eEF2 phosphorylation (Thr56). These findings suggest that translational signaling downstream of Akt/mTOR can be inhibited after lengthening contractions when preceded by AMPK activation and that energetic stress may be antagonistic to the hypertrophic translational signaling response to loaded muscle contractions.
منابع مشابه
Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency.
Although aberrant mTORC1 signaling has been well established in models of obesity, little is known about its repressor, REDD1. Therefore, the initial goal of this study was to determine the role of REDD1 on mTORC1 in obese skeletal muscle. REDD1 expression (protein and message) and mTORC1 signaling (S6K1, 4E-BP1, raptor-mTOR association, Rheb GTP) were examined in lean vs. ob/ob and REDD1 wild-...
متن کاملGlucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process.
Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrat...
متن کاملIncrease in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers.
To investigate the in vivo effects of resistance exercise on translational control in human skeletal muscle, we determined the phosphorylation of AMP-activated kinase (AMPK), eukaryotic initiation factor 4E-binding protein (4E-BP1), p70/p85-S6 protein kinase (S6K1), and ribosomal S6 protein (S6). Furthermore, we investigated whether changes in the phosphorylation of S6K1 are muscle fiber type s...
متن کاملDisruption of Genes Encoding eIF4E Binding Proteins-1 And -2 Does Not Alter Basal or Sepsis-Induced Changes in Skeletal Muscle Protein Synthesis in Male or Female Mice
Sepsis decreases skeletal muscle protein synthesis in part by impairing mTOR activity and the subsequent phosphorylation of 4E-BP1 and S6K1 thereby controlling translation initiation; however, the relative importance of changes in these two downstream substrates is unknown. The role of 4E-BP1 (and -BP2) in regulating muscle protein synthesis was assessed in wild-type (WT) and 4E-BP1/BP2 double ...
متن کاملLeucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.
Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 104 3 شماره
صفحات -
تاریخ انتشار 2008